Immunology in the Trauma Patient

Christine S. Cocanour, MD, FACS, FCCM

- I have no disclosures as it pertains to this presentation
Basic Immunology

- ‘Danger Theory’
 - Immune system recognizes not just nonself (e.g., bacteria, fungi, transplanted organ, etc) but any threat to homeostasis
 - Immune response is triggered by endogenous cellular alarm signals from distressed or injured cells
Basic Immunology

- **Adaptive immunity**
 - Antigen-specific immune response
 - Antigen must be processed and recognized
 - Creates immune cells specifically designed to attack the antigen
 - Memory

- **Innate immunity**
 - Nonspecific defense mechanisms that come into play immediately or within hours of an antigen’s appearance
 - Activated by chemical properties of the antigen

Basic Immunology

- **Innate Immune System**
 - Highly sensitive organ of perception
 - Mobile immune cells responsible for evoking inflammatory and adaptive immune response
 - Neutrophils, macrophages, dendritic cells, etc
 - Somatic cells
 - Epithelial cells, fibroblasts, smooth muscle cells, etc
Basic Immunology

- **Pattern recognition receptors continuously survey the extra- and intracellular compartments**
 - Toll like receptors (TLRs), nod-like receptors (NLRs), C-type lectin receptors (CLR), retinoic-acid-protein 1 (RIG-1)-like receptors

Basic Immunology

- **PAMP: pathogen-associated molecular pattern**
 - Evolutionarily conserved structures expressed by foreign invaders such as bacteria, fungi, viruses
Basic Immunology

- DAMP: damage-associated molecular pattern
 - Intracellularly sequestered molecules that remain unrecognized by the immune system under normal condition
 - Cellular stress or tissue injury allows exposure on surface, actively secreted, passively released from dying cells
 - ATP, HMGB-1, matricryptins, cold-inducible RNA-binding protein, histones and mitochondrial DNA
Basic Immunology

Activation of Innate Immune System ➔ Inflammation

- Provides protection to the host
 - Killing invading pathogens
 - Removing damaged/dead cells
 - Repairing destroyed tissue via wound healing
 - Balancing metabolic irregularities and inducing a supportive adaptive immune response

Inflammatory response to infection protects host from infection

Inflammatory response to tissue injury promotes tissue repair
Shock, Extensive/Extended Surgical Intervention

- Innate immune response unbalanced
 - Dysregulated cascade systems
 - Coagulopathy
 - Complementopathy
 - Reprogrammed, rapidly suppressed immunological function
 - Decreased expression of HLA-DR in macrophages
 - ‘Cytokine storm’ can lead to alterations in Na⁺-K⁺ ATPases resulting in electrophysiological membrane dysfunction
Neutrophils after Severe Trauma

- Genetic storm with functional reprioritization of leukocytes
- Usually results in balanced pro-inflammatory/anti-inflammatory protective effects
- Pro-inflammatory (SIRS)
 - Chemotaxis, cytokine release (IL-6, IL-1Ra, IL-8, IL-10), generation of ROS, phagocytosis, formation of neutrophil extracellular traps (NETS) and bacterial killing
- Anti-inflammatory (previously referred to as CARS)
 - M1 to M2 phenotype
Persistent Inflammation-Immunosuppression Catabolism Syndrome (PICS)

- Ongoing protein catabolism
- Innate and adaptive immunosuppressive features
 - Reduced generation of cytokines
 - Loss of monocyte-macrophage function
 - Persistently increased number of MDSCs
 - Reduction in # and function of effector T cells
- Poor wound healing
- Infections
- High mortality rate
Additional Factors that Compromise Immune Function

- Nosocomial infections
- Immunocompromising comorbidities
- Unfavorable epigenetic or microbiome perturbations
- Programmed cell death can be disturbed
- Lymphocytes and crypt intestinal epithelial cells driven to apoptosis
 - Inability to normalize posttraumatic lymphopenia is associated with a poor outcome
- **Excessive immune, coagulopathy and ROS responses lead to endotheliopathy and dysfunction of cellular barriers**
 - More DAMPs and PAMPs
 - Amplifies a vicious cycle of tissue injury and damaging immunological processes

Huber-Lang, et al. Nature Immunology 19:327; 2018
Endothelial Glycocalyx (EG)

- Thick (0.2-3.0μm) negatively charged CHO-rich layer coating the vascular endothelium
- PGs provide structural support and GAGS attach
 - PGs: syndecans/glypicans
 - GAGS: heparan sulfate, chondroitin sulfate, hyaluronan
- Syndecans are major constituent ensuring endothelial integrity
- Cell adhesion molecules (ICAMS/selectins) are major glycoproteins

Glycocalyx Function

- Physical barrier between blood and vessel wall
- Maintains fluidity by modulating interactions of endothelium with blood cells and proteins
Glycocalyx Function

- Regulates cell adhesion and vascular permeability
- Creates a high intravascular colloid-osmotic gradient
- Acts as a mechano-transducer by sensing shear stress and inducing endothelial release of NO

EG Response to Trauma

- Shedding of EG components occurs in response to
 - Ischemia/hypoxia
 - Reactive oxygen species
 - Inflammation/sepsis
 - Trauma-related sympatho-adrenal activation
- Levels of syndecan-1 on admission correlate with extent of tissue damage, ↑ vascular permeability and mortality
Glycocalyx Response to Trauma

- Loss of HSPG exposes ICAM and selectins that promote WBC and platelet adhesion
- Adhesion induces further release of cytokines, proteases, heparanase that worsens EG degradation and increases permeability

Glycocalyx Response to Trauma

- Free HS acts as a DAMP and likely contributes to autoheparinization
- Components of glycocalyx contribute to propagation of sterile inflammation but concurrently also contribute to immunosuppression
Hemorrhagic Shock and EG

- **Endothelial glycocalyx injured by hemorrhagic shock is partially restored by plasma but not by LR (mice)**
- **Plasma transfusion decreased syndecan 1 and factor VIII levels (humans)**
- **Plasma first resuscitation trial (PRCT) hopes to show that plasma given first will:**
 - Attenuate acute traumatic coagulopathy
 - Improve metabolic recovery
 - Decrease blood component transfusion
 - Reduce incidence of acute lung injury and MOF
 - Decrease mortality at 24 h or 28 days
 - Moore EE, et al. Shock 41(suppl 1):35; 2014

Summary

- **Immune response following trauma is complex, interconnected and redundant**
- **Inflammatory response to tissue injury promotes tissue repair**
- **An unbalanced response can lead to dysregulated complement or coagulation cascades, cytokine storm, and immunosuppression**
- **Patients with severe injury are at risk for MOF or PICS**
Summary

▪ Endothelial glycocalyx is being realized as increasingly important in the response to injury
▪ Our understanding of resuscitation is again changing as increasing evidence suggests plasma should be given first as it may exert a beneficial effect on the glycocalyx

Thank you!